
Journal of Statistical Physics, Vol. 64, Nos. 3/4, 1991 
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By an elementary calculation we obtain the exact mean values of Minkowksi 
functionals for a standard model of percolating sets. In particular, a recurrence 
theorem for the mean Euler characteristic recently put forward is shown to be 
incorrect. Related previous mathematical work is mentioned. We also conjecture 
bounds for the threshold density of continuum percolation, which are associated 
with the Euler characteristic. 
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In a recent communication, (1) Okun stressed the role of the Euler charac- 
teristic in percolation theory. For the canonical model of percolation in the 
continuum, where penetrable balls are randomly placed in Nd, he obtained 
explicit and simple expressions for the mean Euler characteristic ;g in 
arbitrary dimensions d~> 1. This result is interesting since )~ is an important 
topological descriptor for random geometric sets which is employed in such 
diverse fields as, for instance, image analysis, (2) microemulsions,(3'4) and the 
large-scale distribution of galaxies/5) 

Stimulated by Okun's work, we considered a more general model, 
where the balls are replaced by penetrable grains with random size and 
shape. We computed the exact mean values for a family of d +  1 
morphological measures, including the Euler characteristic as a prominent 
member. These additive and motion invariant measures are known in 
integral geometry (6'8) as Quermass integrals or Minkowski functionals. We 
also found that Okun's recurrence formula (1) for Z is erroneous. 
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While preparing our manuscript, we became aware of the mathemati- 
cal literature dealing with similar topics in the context of stochastic 
geometry and stereology (see, e.g., ref. 7). In particular, our results have 
previously been obtained by Davy (9) and, within a more abstract setting, 
by Kellerer. (1~ Since this issue might not be so familiar and in order to 
correct the error in ref. 1, we present here our elementary computation of 
the mean Minkowski functionals for the graim model. 

We also observe by comparison with numerical data that, at least for 
certain grain shapes, the mean Euler characteristic vanishes at a density 
close to the threshold of continuum percolation. 

Let us first recall some basic facts from combinatorial integral 
geometry. 2 The convex ring ~ constitutes the stage for our model. 
denotes the class of all subsets A of the Euclidean space ~a which can be 
represented in terms of a finite union of bounded closed convex sets; also, 

~ ~.  The Euler characteristic Z is introduced as an additive functional 
over ~ ,  so that for A, B ~ ~,  

z(A r o B ) = z ( A )  + z ( B ) -  z(A cT B) (1) 

and 
1, convex A # G; 

z(A) = 0, A = ~ (2) 

We note that this functional Z coincides with the Euler characteristic in 
algebraic topology, employed in ref. 1. 

The Minkowski functionals over ~ are now defined through 

W~(A) = ~ z(A ~ E=) d#(E~), a = 0,..., d -  1 
(3) 

Wa(A) = max(A), cod= rca/2/F(1 + d/2) 

Here, E~ is an a-dimensional plane in ~a, dl~(E=) denotes its kinematical 
density normalized so that for a d-dimensional ball Ba(r) with radius r, 
W=(Ba(r)) = coar a- ~; co a is the volume of the unit ball. 

From definition (3) it is clear that the Minkowski functionals inherit 
additivity from ;~. It will be convenient to renormalize by setting 

M~(A) = ~176 W~(A) (4) 
O)a(.O d 

In Table I, the functionals M~ for d ~  3 are expressed in more familiar 
terms. 

2 We follow the exposition in Chapter 6 of ref. 6. 
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Table I. Renormal ized Minkowsk i  Functionals for  
d-Dimensional  Sets Ade~ in Terms of 

Geometr ic  Measures a 

d M o M 1 M 2 M 3 

1 L Z t / 2  - -  - -  

2 F U/2n Zz/~ - -  
3 V S/8 H/2rt 2 3Z3/4r~ 

a L, length; F, area; U, circumference; V, volume; S, surface area; 
H, integral mean curvature; )~d= z(Ad). 

Let (q be the group of motions (translations and rotations) in the 
Euclidean space ~a. The action of g ~ ~ on the set A is denoted by gA. 
Since Z and the kinematical densities are invariant under if, we also have 
m~(gA) = M~(A), c t=0  ..... d. 

A remarkable result of integral geometry is Hadwiger's theorem, which 
states that the family of d +  1 Minkowski functionals is complete in the 
following sense: If F is an additive, motion-invariant, and continuous (or 

d M monotonous)  functional over ~ ,  then F = Z ~ = 0 f ~  ~ with suitable coef- 
ficients {f~}. Hadwiger's theorem is an essential element in his proof of the 
"principal kinematical formulas" 

/~=0 

In modern terminology, the kinematical density 3 dg in (5) is the Haar 
measure of the group ~r 

In terms of the Minkowski polynomials introduced in ref. 10, 

d t ~ 
M(A) = ~=o ~ M~(A) (6) 

Eqs. (5) can be summarized in the concise form 

f M(A c~ gB) dg,,~ M(A) M(B) (7) 

where the tilde denotes equality up to O(ta). 
In passing we mention ~la) that there is a natural way to formulate a 

discrete integral geometry for polyhedral sets on regular lattices; we shall 

3In Hadwiger's notation,' ~6) dg=dB/ca  ' ca=(d! /2 )  l~ak = a ok .  
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not pursue these matters here, but turn now to the main topic of the 
present note. 

We draw grains A~s ~ ,  i = 1,..., N, from an ensemble with finite values 
for all M~(A~). At the centroid of each grain we fix a d-Bein. These 
so-marked penetrable grains are placed independently at N random sites in 
a d-cube s with random isotropic orientation of their d-Beins. To avoid 
edge effects in applying (7), we use periodic boundary conditions on 0s 
Thus, a random configuration of grains gives rise to a set 

N 

dN = ~ g ~ A ~  (8) 
i = 0  

Our aim is to compute the mean value of M(dNC~D), where D c s 2  is a 
convex test domain. The configurational average is done with the product 
density element 

1 N 

dtt(g, ..... gu)= ~ 1~ dgi (9) 
i = l  

S dg~= l~2l =vol(g2), where the integration over translations is restricted 
to ~. 

Consider first the configurational average for a single grain, AN. 
Additivity of M combined with the kinematic formula (7) and with 
M(gNAN) = M(AN) leads to 

f M(SlN ~ D) dgN/lQI 

[ ,  

= M(du_~ n D) + J [M(D ~ gNAN) 

-- M ( d u -  a r~ D (~ gNA N) ] NgN/IQI 

~ M(SJN_ 1 r~D) + [ M(D )-M(SgN_ ~ c~D)] M(AN)/It21 (10) 

The further average over size and shape of A N replaces M(Au) by its mean 
value m. 

Since the grains are independently and identically distributed in 
location, orientation, size, and shape, Eq. (10) leads to a simple difference 
equation (rood t a+ 1) for the mean value MN = MN( m, D, Q) of M(~/~ m D), 

f f l N - - ( 1 - - ~ )  MN ~ M ( D )  rnlg2] (11) 
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which is solved with the initial value J ~ N = I  = M(D)m/If2[ by 

(12) 

In the bulk limit N, 1s ~ 0% p = N/If2] fixed, we arrive at 

3~r(/~, D) ,-~ M(D)(1 - e -~) (13) 

where # = p m =  ~,~ o Prn~t~/~!. 
The expressions (12) and (13) are our final results written in a con- 

densed form. The main values of the Minkowski functionais are inferred 
from (12) or (13) by comparing the coefficients of t~/a!, ~ = 0 ..... d, on both 
sides. 

= d With the expansion 1 - e  ~ Z~ = o q~ t~/~! + o( td+l )  , we obtain from 
(13), 

igI~(D)= ~ o  ( ~ )  M~(D)  qS~-~, 

where, for example, 

q5 o = 1 - -  e - p m O ,  

41 = pm l e pmo, 

~ = o,..., d (14) 

q52 = (pro2 - m~ p 2) e -pm~ 

c#3 = (pm3 -- 3m l m2P 2 + m~ P 3) e - pm~ 
(15) 

We note that the quantities m, and Ms(D)  still depend on the dimension 
d; see Table I. The contributions to 2~r (D) from M~(D) in (14) describe 
effects due to the finite size and shape of the observation window D. If D 
is dilatated uniformly by the factor 2, then M~(2D)= 2d-~M~(D). There- 
fore, the relations (14) yield 

34~(2D) 
~ =  lira - - ,  ~ =  1 ..... d (16) 

~ ~ Mo(2D)  

In other words, q~ denotes mean values of the Minkowski functionals [cf. 
Eq. (4)] per unit volume for the grain model. 

For d =  1, 2, 3, the explicit expressions of the mean Euler charac- 
teristics per particle ~d= ~ d ~ d ( d ) / p  read (9) 

(17) 

with n = pmo(d). In the special case of monodisperse balls, )~1 and ~2 agree 
with Okun's result. (I) However, his recurrence formula [2d= O(n~d_l)fl?n, 
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in the present notation] yields Z3 = (1 - 3 n  + n 2) e -", in disagreement with 
the exact 23 = ( 1 - 3 n +  3rc2n2/32)e-'. The Euler characteristic is related 
with the integral Gaussian curvature via the combinatorial analogue of the 
Gauss-Bonnet theorem. The term 3rcZn2/32 in 23 arises from the singular 
Gaussian curvature at the points where three spheres intersect. It can be 
shown (11/ that Okun's recurrence relation is valid in the case of oriented, 
parallel hypercubes, where the group of motions is restricted to transla- 
tions. 

The mean Euler characteristics of lattice sets are polynomials in 
p = 1 - e - " ,  which coincide with the matching polynomials known from 
percolation theory. (12) Moreover, 22(P) vanishes at the exact threshold value 
Pc for percolation on a two-dimensional self-matching lattice. In the case of 
continuum percolation, exact values of Pc are not known, but some efforts 
have been made, (13-1s) based on numerical estimates and excluded-volume 
arguments, to infer empirical bounds on Pc. Motivated by these attempts 
to arrive at practically useful percolation criteria, we looked for a possible 
connection between nc of continuum percolation and the zeros no d of zu(n). 
In Table II, numerical nc data for some grain shapes are compared with the 
zeros 

47rf n(02)= pof  = u 2 
(18) 

48hV[l_(l_TZ3s'~ u2] 
/'/(0 3 ) =  p o  v = ~ ~J  J 

obtained from Eqs. (17); n(0 3) denotes the smaller one of the two zeros of 
)~3(n). 

The data tempted us to speculate that n(o2)~< n~ 2) and n(03)~> " (3) might rl c 

possibly hold as universal bounds for nc. As a further support for this 

Table II. Threshold Values for the Percolation Density Parameter and 
Zeros of the Euler Characteristic" 

d = 2  d = 2  d = 3  d = 3  
discs s t icks balls  discs 

nc = 1.12 b 12Pc = 5.7b nc = 0.34b Pc = 0.19c 

no = 1 12po = 7c no = 0.38 Po = 0.22 

a The st icks in d =  2 are rectangles  of length l and  vanish ing  breadth.  The discs in d =  3 are 

cyl inders  of radius  r = 0.5 and  vanish ing  height.  

S imula t ion  da ta  from ref. 14. 
c S imula t ion  da ta  f rom ref. 16. 
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Fig. 1. Threshold densities (15) for percolating cylinders (length l, radius r=0 .015)  in N3 
compared with po(I) (full curve). 

conjecture, we plotted in Fig. 1 the pc(l) values for randomly located and 
orientated cylinders of length l and fixed radius r in comparison with po(l), 
which tends toward 2/(~rrl 2) for l/r ~ o~. 

It would be interesting to check whether the second zero of ~3(n) 
concurs with void percolation, but we are not aware of simulation data for 
this case. 

Finally, we remark that Eq. (12) with a window domain [D[ = L a leads 
to a grain-shape-dependent finite-size correction in the Euler characteristics 
such that n(oa)(L) increases oc 1/L with decreasing L. A similar behavior of 
n~3)(L) was observed (16) for percolating discs in ~3. 
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